首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53768篇
  免费   4265篇
  国内免费   3198篇
电工技术   1782篇
综合类   2388篇
化学工业   15978篇
金属工艺   5052篇
机械仪表   2181篇
建筑科学   690篇
矿业工程   914篇
能源动力   4853篇
轻工业   2487篇
水利工程   120篇
石油天然气   1116篇
武器工业   171篇
无线电   6609篇
一般工业技术   12569篇
冶金工业   2472篇
原子能技术   693篇
自动化技术   1156篇
  2024年   111篇
  2023年   977篇
  2022年   1259篇
  2021年   1847篇
  2020年   1778篇
  2019年   1695篇
  2018年   1647篇
  2017年   1883篇
  2016年   1753篇
  2015年   1755篇
  2014年   2599篇
  2013年   3019篇
  2012年   3366篇
  2011年   4339篇
  2010年   3207篇
  2009年   3279篇
  2008年   2855篇
  2007年   3417篇
  2006年   3096篇
  2005年   2568篇
  2004年   2299篇
  2003年   1984篇
  2002年   1673篇
  2001年   1440篇
  2000年   1293篇
  1999年   1022篇
  1998年   917篇
  1997年   704篇
  1996年   650篇
  1995年   553篇
  1994年   496篇
  1993年   391篇
  1992年   332篇
  1991年   242篇
  1990年   186篇
  1989年   157篇
  1988年   104篇
  1987年   65篇
  1986年   30篇
  1985年   43篇
  1984年   39篇
  1983年   24篇
  1982年   36篇
  1981年   23篇
  1980年   16篇
  1979年   15篇
  1978年   5篇
  1976年   6篇
  1959年   8篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
《Ceramics International》2022,48(21):31111-31120
The current work reports a comparison between the structural and optical attributes of PZT (52/48) powder and thin film prepared via solid-state reaction and sol-gel spin-coating technique, respectively. The two obtained PZT samples, PZT-I corresponding to powder which was calcined at 875°C for 2 h, and PZT-II corresponding to a thin film which was annealed at 650°C for 2 h, were investigated via X-Ray Diffraction, Raman Spectroscopy, UV–Vis Spectroscopy, and SEM analysis. The diffraction spectra suggested the creation of a polycrystalline perovskite structure in both the samples. The optical band gap was evaluated using Tauc's relation. The bandgap values were found to be 3.2 eV for PZT-I and 3.87 eV for PZT-II. The bandgap values are significantly different for the PZT materials prepared by the two different methods.  相似文献   
42.
《Ceramics International》2022,48(18):26206-26216
Mixed oxide (MO) with localized growth feature and high growth rate remarkably affects the lifetime of thermal barrier coatings (TBCs), which indicates that clarifying the ceramic cracking mechanism induced by MO is critical for developing new coatings with high durability. Two kinds of TBC models involving spherical and layered mixed oxides are created to explore the influence of MO growth on the local stress state and crack evolution during thermal cycle. The growth of α-Al2O3 is also included in the model. The undulating interface between ceramic coat and bond coat is approximated using a cosine curve. Dynamic ceramic cracking is realized by a surface-based cohesive interaction. The ceramic delamination by simulation agrees with the experimental observation. The effects of MO coverage ratio and growth rate on the TBC failure are also discussed. The results show that the MO growth causes the local ceramic coat to bear the normal tensile stress. The failure mode of coating is turned from α-Al2O3 thickness control to MO growth control. Once the mixed oxide appears, local ceramic cracking is easy to occur. When multiple cracks connect, ceramic delamination happens. Suppressing MO formation or decreasing MO growth can evidently improve the coating durability. These results in this work can provide important theoretical guidance for the development of anti-cracking TBCs.  相似文献   
43.
The introduction of catalyst on anode of solid oxide fuel cell (SOFC) has been an effective way to alleviate the carbon deposition when utilizing biogas as the fuel. A series of La0.6Sr0.4Co1-xNixO3-δ (x = 0, 0.2, 0.4, 0.6, 0.8) oxides are synthesized by sol-gel method and used as catalysts precursors for biogas dry reforming. The phase structure of La0.6Sr0.4Co1-xNixO3-δ oxides before and after reduction are characterized by X-ray diffraction (XRD). The texture properties, carbon deposition, CH4 and CO2 conversion rate of La0.6Sr0.4Co1-xNixO3-δ catalysts are evaluated and compared. The peak power density of 739 mW cm?2 is obtained by a commercial SOFC with La0.6Sr0.4Co0.4Ni0.6O3-δ catalyst at 850 °C when using a mixture of CH4: CO2 = 2:1 as fuel. This shows a great improvement from the cell without catalyst for internal dry reforming, which is attributed to the formation of NiCo alloy active species after reduction in H2 atmosphere. The results indicate the benefits of inhibiting the carbon deposition on Ni-based anode through introducing the La0.6Sr0.4Co0.4Ni0.6O3-δ catalyst precursor. Additionally, the dry reforming technology will also help to convert part of the exhaust heat into chemical energy and improve the efficiency of SOFC system with biogas fuel.  相似文献   
44.
Development of efficient, low cost and multifunctional electrocatalysts for water splitting to harvest hydrogen fuels is a challenging task, but the combination of carbon materials with transition metal-based compounds is providing a unique and attractive strategy. Herein, composite systems based on cobalt ferrite oxide-reduced graphene oxide (Co2FeO4) @(rGO) using simultaneous hydrothermal and chemical reduction methods have been prepared. The proposed study eliminates one step associated with the conversion of GO into rGO as it uses direct GO during the synthesis of cobalt ferrite oxide, consequently rGO based hybrid system is achieved in-situ significantly, the optimized Co2FeO4@rGO composite has revealed an outstanding multifunctional applications related to both oxygen evolution reaction (OER) and hydrogen counterpart (HER). Various metal oxidation states and oxygen vacancies at the surface of Co2FeO4@rGO composites guided the multifunctional surface properties. The optimized Co2FeO4@rGO composite presents excellent multifunctional properties with onset potential of 0.60 V for ORR, an overpotential of 240 mV at a 20 mAcm?2 for OER and 320 mV at a 10 mAcm?2 for HER respectively. Results revealed that these multifunctional properties of the optimized Co2FeO4@ rGO composite are associated with high electrical conductivity, high density of active sites, crystal defects, oxygen vacancies, and favorable electronic structure arisinng from the substitution of Fe for Co atoms in binary spinel oxide phase. These surface features synergistically uplifted the electrocatalytic properties of Co2FeO4@rGO composites. The multifunctional properties of the Co2FeO4@ rGO composite could be of high interest for its use in a wide range of applications in sustainable and renewable energy fields.  相似文献   
45.
High-temperature water electrolysis through solid oxide electrolysis cells (SOEC) will play a key role in building a hydrogen economy in the future. However, the delamination between the air electrode and the electrolyte remains a critical issue to be addressed. Previously, it was hypothesized that Co migration may improve the catalytic activity of the SrZrO3 second phase at the LSCF-YSZ interface, eventually leading to the delamination. In this work, the LSCF-YSZ interfaces sintered at different temperatures were examined in detail. The activation behaviors of the LSCF electrodes upon application with electrolysis current were characterized under different conditions. Further, samples containing purposely added SrZrO3 interlayer with and without cobalt were fabricated and compared. The activation process is less significant for the sample with cobalt-added SrZrO3 interlayer than the sample with pure SrZrO3 layer, supporting the hypothesis that Co migration may lead to the activation behavior.  相似文献   
46.
Solid oxide fuel cells (SOFCs) are considered an important technology in terms of high efficiency and clean energy generation. Flat-tubular solid oxide fuel cell (FT-SOFC) which is a combination of tubular and planar cell geometries stands out with its performance values and low costs. In this study, the performance of an FT-SOFC is analyzed numerically by using finite element method-based design as a result of changing parameters by using different fuels which are pure hydrogen and coal gas with various proportions of CO. In addition, cell performance values for different temperatures were analyzed and interpreted. Analyzes have been performed by using COMSOL Multiphysics software. The rates of CO composition used are 10%, 20%, and 40%, respectively. In addition, the air was used as the oxidizer in all cases. The cell voltage and average cell power of the FT-SOFC were examined under the 800 °C operating condition. The maximum power value and current density value were obtained as 710 W/m2 and 1420 A/m2 for the flat-tubular cell, respectively. As a result of the study, it was observed that the maximum cell power densities increased with increasing temperature. Analysis results showed that FT-SOFCs have suitable properties for different fuel usage and different operating temperatures. High-performance values and design features in different operating conditions are expected to make FT-SOFC the focus of many studies in the future.  相似文献   
47.
BaCe0.7Zr0.1Y0.2O3-δ (BCZY) is one of the promising electrolytic candidate for solid oxide fuel cell (SOFC) due to its good proton conductivity and better stability. Herein, the effect of dual sintering aids such as CuO-Bi2O3 upon the sinterability at low temperature, improved electrochemical properties, and thermo-chemical changes about proton-conducting BaCe0.7Zr0.1Y0.2O3-δ electrolyte were investigated in detail. FESEM micrographs and shrinkage curves revealed significant improvement in sinterability and densifications of BCZY electrolyte. The dense pellets were sintered with CuO-Bi2O3 (2–3 mol %) as sintering aids at a temperature of 1150 °C for 5 h. The perfectly uniform distribution of sintering aids increased the linear shrinkage of BCZY from 5% till 19–21%. The crystallite size and grain growth within the structure was enhanced due to the formation of the melting phase of Bi2O3 and Cu2+ incorporation in the perovskite structure. The elevated and improved electrochemical measurement for BCZY with 2 mol% of CuO-Bi2O3 as sintering aid categorized it well suited for solid oxide fuel cells.  相似文献   
48.
《Ceramics International》2022,48(2):2298-2305
As a promising anode candidate, hierarchical porous transition metal oxide nanosheets (TMO-NSs) have attracted significant interest due to their various advantages of abundant active sites, high specific capacity and shortened ion/electrons transport pathways. Although the TMO-NSs have been developed in the past decades, the previous synthesis strategies have some drawbacks such as high cost, complex synthesis techniques, and the requirement of special instruments. Herein, we develop a generalized and facile biomorphic method to synthesize various controllable hierarchical porous TMO-NSs by using waste bagasse as biotemplate. Furthermore, the porosity and pore size of as-prepared hierarchical porous TMO-NSs can be adjusted by changing the precursor solution concentration. Novel hierarchical porous TMO-NSs have been successfully prepared for many ternary or binary TMO, such as NiFe2O4, ZnFe2O4, ZnMn2O4, NiO and ZnO. Owing to their unique nanostructure, as-synthesized hierarchical porous TMO-NSs show an excellent electrochemical performance when used as anode for Li/Na-ion batteries. We believe that various hierarchical porous TMO-NSs available from the green, economical and convenient biomorphic strategy may lead to further developments in research and application on TMO-NSs materials.  相似文献   
49.
In this study, dilute chemical bath deposition technique has been used to deposit CdZnS thin films on soda-lime glass substrates. The structural, morphological, optoelectronic properties of as-grown films have been investigated as a function of different Zn2+ precursor concentrations. The X-ray diffractogram of CdS thin-film reveals a peak corresponding to (002) plane with wurtzite structure, and the peak shift has been observed with the increase of the Zn2+ concentration upon formation of CdZnS thin film. From morphological studies, it has been revealed that the diluted chemical bath deposition technique provides homogeneous distribution of film on the substrate even at a lower concentration of Zn2+. Optical characterization has shown that the transparency of the film is influenced by Zn2+ concentration and when the Zn2+ concentration is varied from 0 M to 0.0256 M, bandgap values of resulting films range from 2.42 eV to 3.90 eV while. Furthermore, electrical properties have shown that with increasing zinc concentration the resistivity of the film increases. Finally, numerical simulation validates and suggests that CdZnS buffer layer with composition of 0.0032 M Zn2+ concentration would be a promising candidate in CIGS solar cell.  相似文献   
50.
A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号